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ABSTRACT  

Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, 
and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (G-
CLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument 
team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-
object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR 
YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design 
optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its 
preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, 
another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multi-
fiber-feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will 
support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing 
synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT 
collaborations are discussed. 

Keywords: GMT, ELT, spectrograph, integral-field spectrograph, multi-object spectrograph, optical instruments, 
infrared instruments 

 

1. INTRODUCTION  

The GMT instrumentation program has followed the usual progression for instrument development during the past 10 
years, beginning with the run-up to the GMT Conceptual Design Review1 in 2006. That process was described in our 
previous SPIE report2. Briefly, early concepts were discussed within the GMT community, followed by conceptual 
designs with a subsequent down-select to define a first generation suite, and then preliminary designs for those few 
selected instruments. The status of the GMT instrument developments currently spans that entire range of process and 
beyond, from early concept to final design. 

In this paper, we present an overview of those developments for the first generation instrument suite. Details of the 
individual instrument designs and their status can be found elsewhere in these procedings3,4,5,6,7. We also describe a 
modest optical imager that recently has been added to the first generation of instruments, as well as several early ideas 
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for future instruments. The timeline for developing ELT-class instruments is so extended (>10 years) that all large 
telescope projects have started down the future generation path. 

In our final sections, we complement the look forward to completion of the first generation with a retrospective view, 
briefly discussing the challenges faced by all ELT instrument teams, and finally, describe how some of those challenges 
may be mitigated in the future. 

 

2. THE GMT PROJECT STATUS 

The GMT project-wide status is described in detail by McCarthy8 elsewhere in this conference. Here, we include a short 
discussion of those elements of the greater GMT project that impact instrument development most directly. 

2.1 Requirements 

Instrument designs are relatively static compared to the rapidity of scientific discovery. The tools we proposed 10 years 
ago to solve problems of the past decade may not be the same tools you would choose today. To mitigate that concern, 
telescope projects must revisit their science cases from time to time in order to assess whether tomorrow’s astronomical 
questions will impact today’s requirements. We can then ask ourselves if the instruments we are building are the right 
ones. Not surprisingly, first generation ELT instruments have very broad application because they were chosen with 
breadth as a criterion. But, we need to be careful not to allow inertia to cloud our judgement on those early decisions. 

GMTO revised its science book in 201210, and it may be time for another update given recent discoveries (e.g., the vast 
collection of known exoplanets, discovery of gravitational waves9). Science requirements flow from these science 
drivers, and lower level requirements flow from those. GMTO is in the process of revising and reviewing its top level 
requirements for the final time before releasing purchase tenders for major procurements (e.g., telescope mount, facility 
enclosure) in order to ensure a tight connection back to the science.  

Clearly, instruments may be impacted by the flow down of changes from higher level requirements. 

2.2 Telescope Design 

In response to the GMT Preliminary Design Review in January 2014, several aspects of the telescope structure have 
been carefully scrutinized. Key concerns have been addressed, including the integral nature of the 7 mirror cells to the 
telescope structure, the potential for large amplification of seismic accelerations (up to 5g), and the installation, number 
of ports, and mounting of instruments.  

All of these impact the instruments, and the latter, very directly. 

2.3 Primary Mirrors 

Four of the 8 mirrors have been cast, including the central segment. They are in various stages of fabrication. Mirror 5 is 
scheduled to be cast within the next year and glass for mirror 6 is being purchased with deliveries scheduled for the end 
of 2016.  

The impact of mirror delivery on the instruments should be minor, but there are two aspects to consider. First, the mirror 
segments are close to the critical path and may drive the overall project schedule. For instrument development, this could 
imply a work slowdown (or more optimistically, a speedup). Second, GMT plans to begin operation with a subset of the 
seven mirrors perhaps four or five, and so, IR instruments will have to swap out their cold pupil stop to match the 
primary mirror configuration as additional segments are delivered and installed.  

2.4 Adaptive Optics (AO) 

GMT has adopted a staged implementation of capabilities (see section 9 of McCarthy8) in which the AO systems are 
deferred to the out-years of the project. Because the GMT IR instruments (GMTIFS and GMTNIRS, in particular) 
require AO, the instrument suite will be restricted to natural seeing operation with visible wavelength instruments. 
Strategies are being developed to bring a natural seeing IR capability to GMT close to first light (see Section 4.1). 
Furthermore, GMT’s GLAO implementation is a key mode of the AO system that is also deferred, thereby impacting the 
performance of the natural seeing instruments as well. 
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2.5 Enclosure 

Normally, the enclosure doesn’t interact strongly with instrument development. GMT’s enclosure design is undergoing 
several trade studies11,12 that will flow to considerations regarding instrument handling, installation, and maintenance. 
While these are minor concerns, they do impact aspects of the design. 

2.6 Schedule 

As noted in Section 2.3, the negotiated date for instrument delivery derives from the schedule. If the date is pushed out, 
there are cost implications along with other risks associated with delays (e.g., loss of key personal, procurement costs, 
vendor loss). The GMT schedule that is shown in Figure 1 is purely technically driven and assumes that funding is 
available when needed. GMT could go into operation with four primary mirror segments in late 2022, but the full array 
of segments requires another few years. 

 

 
Figure 1. Summary schedule for the GMT project. The 2 grey bars along the bottom represent the instrument schedules. 

 

 

3. FIRST GENERATION INSTRUMENT SUITE 

Table 1 and Table 2 summarize the instrument capabilities in GMT’s first generation suite. These are color-coded by the 
status of their development stage. With the exception of ComCam, a new addition to the family, the other five 
instruments are described in far more detail in other papers at this conference. They also have been discussed at previous 
conferences in this series. Thus, the instrument descriptions we present here are brief. 
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The GMTIFS team is about 70% through its preliminary design study. The focus of effort has been to retire risk 
developments, including precision (i.e., sub-micron) cryogenic control of the steering mirror that directs the AO tip/tilt 
guide star to the wavefront sensor, optical design for the spectrograph and ADC, and wavefront sensor detector systems. 
Related activities include cold operation of the wavefront sensor deformable mirror for off-axis guide stars and 
exploration of eAPD arrays for the wavefront sensor. It will be the first AO imager instrument for GMT (see Figure 1) 
and is scheduled for delivery in mid-2023. 

 

3.3 GMACS 

The GMT Multi-object Astronomical and Cosmological Spectrograph (GMACS) is a general purpose, visible light 
(3500-9500 Å), multi-object, slit spectrograph (MOS) that covers a relatively wide field (approximately 7.5’ diameter). 
Spectral resolutions of 1000-6000 are enabled by multiple VPH gratings in each of the red and blue channels. The 
current GMACS design also includes an imaging mode with a scale of 0.05”/pix. 

The GMACS5 team is led by Darren DePoy (Texas A&M Univ) with support from GMT’s South Korean partners at 
Kyung Hee University and The São Paulo Research Foundation. As an optical MOS, GMACS has extremely wide 
application across astronomy. Some of its key science areas include: 

• Stellar evolution – brown dwarfs; white dwarfs 
• Nearby galaxies – chemical enrichment history; dark matter distribution 
• Distant galaxies - Lyα luminosity function at z < 6.5 ; chemical enrichment of the ISM 
• LSST – follow-up of transients; redshift surveys 

 

Figure 3. The GMTIFS layout: Left - partially populated optical table within the cryostat volume. Final design for all 
optical elements is complete with some mechanical mounts awaiting tolerancing. The central chamber of the cold 
work surface houses the OIWFS beam steering mirror, while the fore optics, imager, and IFS plus on-instrument 
wavefront sensor (OIWFS) are distributed across the upper and lower zones. Right - A view of the GMTIFS cryostat 
showing the GMT tertiary mirror folding the 180 arcsec diameter field to GMTIFS. The dichroic cryostat window 
reflects λ < 0.95 μm to the external NGSAO and LTAO wavefront sensors mounted to the front of the cryostat. 
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Figure 5. A simplified layout of the GMTNIRS spectrograph. The JHK modules are nearly identical, as are the L and M 
modules. 

 

The GMTNIRS team is developing the techniques to fabricate the unique silicon immersion gratings that the instrument 
requires. Several of the smaller (100 mm) JHK gratings have been completed through the difficult stages and results look 
excellent (Figure 6, left).  

 

The larger (150 mm) L and M gratings have only been taken through the preliminary processes (Figure 6, right) but will 
be the focus of work during the latter half of 2016. Like GMTIFS, AO is needed for optimal operation at GMT. 
Nevertheless, the slit width can be widened to ~0.3” for use in natural seeing until the AO system is installed, but with 
degraded throughput and resolution. 

Following the grating development, the GMTNIRS team will begin their preliminary design for the rest of the 
instrument. As noted above, GMTNIRS is designed to be an AO-fed instrument and requires the AO system for optimal 
performance. The schedule shows that work on GMTNIRS could proceed to a delivery in mid-2022 but AO capabilities 
are not scheduled for commissioning until mid-2024. Consequently, an early delivery for seeing-limited operation is 
being discussed within the partnership. 

 

Figure 6. A near-final processed K-band grating for GMTNIRS (left) and a substrate for L-band that has been x-ray 
aligned and cut. 
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imager with little increase in cost/scope. For a very modest increment in cost, additional filter slots can dramatically 
increase its scientific potential, especially for narrow-band imaging with GLAO. For broadband imaging, though, other 
facilities such as LSST can be competitive. 

Jeff Crane (Carnegie Observatories) is serving as the PI for ComCam. It is very early in the development process, with a 
start for conceptual design in Q3 of 2016. Requirements include a pixel scale of 0.06 arcsec/pix and better than 0.10 
arcsec image quality to evaluate GLAO performance across its 6’x6’ field of view provided by a single 6Kx6K CCD. 
Suggested science topics include: 

• Stellar populations in dwarf and nearby galaxies 
• Identification of planetary nebulae (PNe) at 100 Mpc and beyond; distance determinations using the PNLF 
• Blind searches for Lyα sources at z>6 

 

ComCam is required to verify the telescope performance at first light. Thus, it must be delivered well before mid-2022 
and is scheduled for shipping in mid-2021. This is a 5-year development window, which is short by ELT instrument 
standards. Fortunately, ComCam is relatively simple, and may be the simplest of all ELT instruments. A notional optical 
layout is shown in Figure 8, with glasses identified in Table 3. 

 

 
Figure 8. Draft optical layout for Comcam. Elements labeled as F1 and F2 are locations for filters. Narrow-band filters are 
best located in the nearly collimated zone between elements L3 and L4 whereas broadband filters may be used in the 
faster converging beam prior to L10. 

 

Table 3. Glass material for the ComCam layout shown above. 

Lens Material Lens Material 
L1 S-FSL5Y L6 S-FPL51Y 
L2 CaF2 L7 CaF2 
L3 BAL35Y L8 BAL15Y 
L4 CaF2 L9 FPL51Y 
L5 BAL15Y L10 Silica 

 

4. FUTURE INSTRUMENT CONCEPTS 

Each of the ELT projects is thinking about future rounds of instruments because of the lengthy incubation period (10-15 
years) and the long time since the first round was originally conceived. GMT further recognizes that its first generation 
suite was selected in 2012, prior to the concept of staging telescope capabilities over 3-4 years. In that model, adaptive 
optics is deferred several years and the IR instruments are dragged down the timeline along with the AO, leaving GMT 
with no IR instrument and no high spatial resolution capability for that period.  

L1

L2/L3 L4/L5/L6 L7/L8/L9 L10

F1 F2

1200 mm
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• The telescope design is not stable and so the interfaces and predicted telescope performance changes, 
demanding redesign of the instruments. 

• Key personnel on a team may become unavailable for a variety of reasons (e.g., retirement, illness, change of 
position), leading to retraining and possibly an irreplaceable talent loss. 

• Vendors come and go. A sole-source component may become unobtainable, or a new vendor may appear with a 
far better product that requires consideration for redesign. 

• Technology evolves. For example, detectors and control electronics can improve; new optical glasses are 
brought to the market. Should you redesign to improve performance? 

5.2 Instruments are Expensive 

• Depending on the corporate model, ELT instruments can exceed $50M. While that cost is included in the 
overall project budget, overruns elsewhere in the project will push instrumentation into the future in order to 
complete the basic facility. In extreme situations, instruments may be canceled. 

• Because each instrument is expensive, it is appealing to add as much functionality as possible to each 
instrument. In doing so, the instrument may become more complex, further increasing cost and delivery time. 

• One reason that instruments are expensive is because they are large and heavy, with optics pushing to the 
maximum dimensions that vendors can produce and where risks are high. Size has other implications, requiring 
new test facilities and new handling equipment. 

5.3 High Expectations 

• The astronomers who benefit from the existence of ELTs are demanding end users. They expect the data quality 
from an ELT to vastly surpass the quality from current 8-10m facilities in terms of throughput, wavelength 
coverage, and especially spatial resolution. It is the latter that pushes instrument development into a difficult 
regime where micron and sub-micron tolerances are the norm, and the parts are large. 

 

6. COLLABORATIONS 

One approach to mitigating the special challenges of ELT instrument development is for all three projects to work 
towards solving common problems in a more formal collaborative fashion.  

6.1 Technical Workshops 

A recent example is the ELT Detector Workshop21 in October 2015. The three projects were represented by ~30 
attendees from their instrument teams and project offices, along with 16 representatives of the detector industry, both 
optical and infrared (Figure 12). 

Open and frank discussions were held on topics of common interest, such as the availability and performance of 
detectors and their electronic controller systems, real costs, upcoming developments, and new directions. In return, 
vendors learned about the short- and long-term demands of the projects. 
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Figure 12. Detector representatives from Raytheon, Teledyne, E2V, STA, and Selex during a lunch break. 

 

Other areas for collaborations exist, for example: 

• Gratings, both ruled and VPH 
• Optical coatings 
• Software, data pipelines, data archives 

 

6.2 Time Trades 

Another form of collaboration is time trades. As a global community, we should be thinking more about building a 
system of facilities than building three independent projects. For example, each of the projects is building an AO-fed 
near-IR IFU spectrograph, and at the same time, there may be instruments that are unique to only one ELT. It is the 
integrated set of capabilities that astronomers need for their research; maybe we only need one of everything rather than 
three of everything. The Mauna Kea22 system demonstrates the feasibility of time trades. 
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