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ABSTRACT  

The Giant Magellan Telescope (GMT) adaptive optics (AO) system will be an integral part of the telescope, providing 
laser guidestar generation, wavefront sensing, and wavefront correction to every instrument currently planned on the 
25.4 m diameter GMT.  There will be three first generation AO observing modes: Natural Guidestar, Laser Tomography, 
and Ground Layer AO.  All three will use a segmented adaptive secondary mirror to deliver a corrected beam directly to 
the instruments. 

The Natural Guidestar mode will provide extreme AO performance, with a total wavefront error less than 185 nm RMS 
using bright guidestars.  The Laser Tomography mode uses 6 lasers and a single off-axis natural guidestar to deliver 
better than 290 nm RMS wavefront error at the science target, over 50% of the sky at the galactic pole.  The Ground 
Layer mode uses 4 natural guidestars on the periphery of the science field to tomographically reconstruct and correct the 
ground layer AO turbulence, improving the image quality for wide-field instruments.  A phasing system maintains the 
relative alignment of the primary and secondary segments using edge sensors and continuous feedback from an off-axis 
guidestar.  We describe the AO system preliminary design, predicted performance, and the remaining technical 
challenges as we move towards the start of construction. 

Keywords: Extremely Large Telescopes, Adaptive Optics, Adaptive Secondary Mirrors, Ground Layer AO 

1. INTRODUCTION 
The Giant Magellan Telescope is a 25.4 m diameter optical/infrared telescope being developed for the purpose of 
conducting forefront scientific research in general astrophysics, cosmology, and the study of extrasolar planetary 
systems1 (Figure 1).  The GMT optical design is a fast, wide field (20′ diameter) aplanatic Gregorian with a plate scale of 
0.99.arcsec/mm at the final f/8.2 focus2.  The optics are supported in an altitude-azimuth structure that has been designed 
to be stiff and compact.  The primary mirror will be composed of seven 8.4 m diameter borosilicate honeycomb 
segments fabricated by the Stewart Observatory Mirror Lab.  Two secondary mirror assemblies with the same optical 
prescription will be provided for the GMT: an adaptive secondary mirror (ASM) and a fast-steering secondary mirror 
(FSM).  Each consists of seven 1.05 m diameter segments supported by 6 degree of freedom positioning systems from a 
rigid top end frame.  The ASM will be used in routine operation to support all the telescope observing modes, while the 
FSM will be used during commissioning and whenever servicing of the ASM is required.   

Science instruments will mount on the moving structure of the telescope, utilizing either the direct Gregorian focus (2 
reflections), or a folded Gregorian focus provided by a steerable M3 located below the primary mirror (3 reflections).  
Narrow-field AO instruments will be located at the folded Gregorian focus, while instruments with a field of view up to 
20′ diameter will be located at the direct Gregorian focus.  Up to 11 instruments can be accommodated on the telescope 
simultaneously, most mounted on a single large Gregorian Instrument Rotator (GIR) which provides field de-rotation.  

                                                 
1 abouchez@gmto.org; phone +1 626 204 0517; http://www.gmto.org 
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calibration terms. Wavefront aberration will be compensated by the ASM, providing diffraction-limited 
imaging at 0.9-25 µm wavelength over a field of view limited by atmospheric anisoplanatism. 

The ASM must also support the Natural Seeing (NS) observing mode, in which only fast tip-tilt is corrected.  The AO 
observing modes will be deployed sequentially during the commissioning period of the telescope, with the system first 
supporting GLAO correction for the GCLEF and GMACS instruments, then NGAO mode and finally LTAO mode for 
the diffraction-limited instruments.  Second-generation observing modes which use the ASM as the first-stage corrector 
for an extreme, multi-conjugate, or multi-object AO system are being considered. 

2.2 Performance Requirements and Error Budgets 

The top-level performance requirements in each observing mode are listed in Table 1. The GMT AO performance 
requirements have deliberately been kept somewhat less ambitious that those of other extremely large telescope projects, 
allowing a comparatively simple and cost-effective design to meet those requirements.  In additional to diffraction-
limited and high-contrast science, there is a strong scientific emphasis on spectroscopy of low surface-brightness objects. 

All requirements are specified at 15° from zenith in median integrated turbulence conditions (r0=16.4 cm at zenith), but 
with 75th percentile wind conditions (10 m/s), seasonal minimum sodium density (2.1×1013 atoms m-2) and a 
conservative assumption of the turbulence outer scale (L0=60 m).  The turbulence profile used is the January 2008 
“typical-typical” model of Goodwin9, measured using the SLODAR method on the 2.5 m DuPont telescope. 

Mode Performance Requirements 

GLAO SCI-1887: <0.30 arcsec FWHM at K band over >6.5 arcmin diameter, >50% of the time 

NGAO SCI-1883: >75% K (2.18 µm) Strehl for R<8 stars 
SCI-1882: >105 contrast at 0.12 arcsec (4λ/D) in L’ band 

LTAO 
SCI-1884: >30% H (1.65 µm) Strehl over 20% of the sky at the galactic pole 
SCI-1885: >40% K (2.18 µm) ensquared energy in 50×50 mas over 50% of sky at the galactic pole 
SCI-1886: >50% K (2.18 µm) ensquared energy in 85×85 mas with a K=15 on-axis NGS 

Table 1: GMT AO performance requirements 

Error budgets based on simple analytic calculations and confirmed using numerical simulations have been developed to 
flow down the top-level AO performance requirements to those of subsystems and components.  The starting point for 
analytic performance estimates is the GMT diffraction-limited PSF.  The gaps in the GMT pupil result in diffraction 
features which have a significant impact on encircled/ensquared energy performance metrics, and a modest impact on 
FWHM.  The on-axis pupil ASM pupil and a simulated NGAO PSF are illustrated in Figure 2.  The apparent holes in the 
outer segments are projections of holes in the ASM face sheets, required to accommodate their central flexures. 

 

  
Figure 2.  (Left) GMT on-axis pupil. (Right) Simulated NGAO mode PSF with 91% K Strehl (logarithmic stretch). 
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3.8 Calibration Systems 

Hardware and software systems have been designed to facilitate end-to-end testing of the AO system both on and off the 
telescope.  The M2 Calibration Facility will allow optical testing of the ASM or FSM, integration and system-level 
testing of the AO system, and integration of the AO system with a folded Gregorian instrument at the observatory 
(Figure 13).  It will be located in the Summit Support Building, 100 m from the telescope enclosure.  Two flat fold 
mirrors, 1.8 m and 0.5 m diameter, fold the optical path from the ASM to an instrument located a grade level in an ISO 8 
cleanroom.  A 12 m deep pit excavated from bedrock provides both mechanical and temperature stability. 

Various sources can be installed at the prime focus.  The AO Retro-reflector uses an ellipsoidal and a flat mirror to retro-
reflect a source projected from the Gregorian focus while preserving the pupil location.  The LTAO Calibration Source 
uses a computer-generated hologram and a single aspheric optic to simultaneously project NGS and LGS sources to the 
wavefront sensors and instrument31.  The second fold mirror can be reoriented to feed a multi-wavelength Twyman-
Green interferometer, allowing the ASM optical figure to be measured and the segments phased independent of 
wavefront or edge sensors. 

All of these calibration functions will be available on the telescope as well as in the lab.  The prime focus calibration 
sources will be mounted on a deployment arm, visible in Figure 1 just below the ASM.  The calibration interferometer 
will be mounted in a folded Gregorian instrument location that can be addressed by M3. 

4. PREDICTED PERFORMANCE 
4.1 Natural Guidestar AO 

Simulations of the NGAO observing modes were performed using the software tool PASSATA (PyrAmid Simulator 
Software for Adaptive OpTics Arcetri) developed at Arcetri Observatory to study pyramid-based AO systems18.  
PASSATA is based on a full Fourier optics code including tilt modulation.  The ASM correction takes into account the 
influence functions derived from finite-element analysis of the mirror. 

Figure 14 illustrates the rapid convergence of the NGAO control loops for a bright guide star in median turbulence 
conditions.  This simulation used a simple integrator controller and includes no telescope vibrations or calibration errors, 
and thus represents an upper limit to the system performance.  The mean segment piston error over 10 turbulence 
realizations is 15.3 nm RMS after convergence of the second-wavelength control loop, and the mean K Strehl is 95.6 %. 

 

 
Figure 14. Example of the convergence of the NGAO control loops with a seeing of 0.63" and V=8 guidestar.  Each 
iteration represents 1 ms.  (Left) K Strehl.  (Right) Segment piston error.  Vertical dashed lines spaced every 150 ms indicate 
where second-wavelength channel phasing corrections are applied. 

 

The expected performance of the NGAO mode for various guidestar magnitudes, seeing, and wind conditions is 
summarized in Table 3.  Case D0 represents the requirement (telescope 30° from zenith, pointed into 10 m/s wind, 
minimum enclosure aperture, 7 mas RMS tip-tilt disturbance), while Case C0 is a worst-case scenario (telescope 30° 
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from zenith, pointed into 10 m/s wind, wind vents 50% open, 69 mas RMS tip-tilt disturbance).  A simple integrator is 
unable to control tip-tilt and focus in Case C0, and a robust Infinite Impulse Response filter of order (4,4) was therefore 
used for both wind cases32.  An additional 95 nm RMS of wavefront error has been added in quadrature to the simulation 
results to account for effects not included (eg. calibration errors, uncorrectable telescope and instrument aberrations, 
residual mechanical vibrations, and flexure). 

The expected total wavefront error in the conditions specified in requirement SCI-1883 is 116.1 nm RMS, and the 
predicted K Strehl is 89.3%.  All cases but the most extreme (wind case C0 and an MV =12 guide star) meet the SK > 
75% criterion. 

MV Seeing 
[arcsec] 

Wind
case Controller Wavefront Error

[nm RMS] 
SK

[%] 

8 0.63 
none Integrator 120.9 88.5 
D0 IIR 116.1 89.3 
C0 IIR 122.8 88.1 

8 1.0 
none Integrator 154.2 82.0 
D0 IIR 140.9 84.7 
C0 IIR 156.2 81.6 

12 0.63 
none Integrator 156.4 81.5 
D0 IIR 133.4 86.2 
C0 IIR 189.9 74.1 

Table 3: NGAO mode performance summary. 

4.2 Laser Tomography AO 

Several AO simulation packages were used to refine the LTAO system design during the preliminary design phase, 
including the Object Oriented Matlab Adaptive Optics (OOMAO) modeling library33, the Yorick Adaptive Optics 
(YAO) simulation tool34, and the Fortran 95 Simulation Library (SL95)23.  The simulation results presented here were 
computed with SL95 and capture the following key features of the LTAO system: 

• 6 LGS in an r=30” hexagonal asterism, plus one off-axis NGS at variable field angle 

• LGS point sources convolved by a Gaussian blur kernel, with vertical structure based on UBC lidar sodium 
density profiles35 

• Wavefront reconstruction using a minimum variance tomographic reconstructor, both on-axis (to control the 
ASM) and off-axis (to control the OIWFS DM) 

• Pseudo open-loop control of the ASM and OIWFS DM 

• An additional 112 nm RMS of wavefront error to account for error terms not simulated 

The image quality metrics of H band Strehl and K band 50×50 mas ensquared energy are displayed in Figure 15 as a 
function of NGS off-axis distance and magnitude.  It is clear from these simulation results that to achieve H Strehl >0.30 
on the science target, a star less than ~60″ off-axis and with magnitude H<16 must be available for the OIWFS.  As 
expected, the K band 50×50 mas ensquared energy is far less affected by both measurement error and tip-tilt 
anisoplanatism. 

Sky coverage can be estimated by the fraction of 100 random star fields created with the Besançon galaxy model36 with 
at least one star that delivers a specified image quality.  The sky coverage fractions for H Strehl >0.30 (requirement SCI-
1884) and K band 50×50 mas ensquared energy >0.40 (requirement SCI-1885) are illustrated in Table 4 and Table 5, 
both with and without an OIWFS DM to correct anisoplanatism of the NGS.  The sky coverage without an OIWFS DM 
formally meets the requirements, but with little margin.  That with the OIWFS DM meets both the requirements and the 
goals, achieving H Strehl >0.30 over 79% of the sky at the galactic pole, and K band 50×50 mas ensquared energy >0.40 
with complete sky coverage. 
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While the improvements in image quality provided by the GLAO mode may appear small, particularly in the visible, 
they should really be evaluated on the basis of the improvement which they provide in terms of signal-to-noise ratio 
(SNR) over a given integration time, or reduction in integration time to achieve a given SNR.  For background-limited 
observations of unresolved sources, the SNR will be proportional to 1 FWHM⁄ .  Thus the predicted 17% reduction in R 
band FWHM over a 5′ field provides a 21% increase in SNR, or a 32% reduction in integration time to achieve the same 
SNR.  In this regime, the GLAO mode will provide a great benefit, equivalent to increasing the available observing time 
on the GMT by nearly 50%.  The sensitivity gains in the infrared are even greater. 

5. CONCLUSIONS 
The GMT AO system passed its preliminary design review in July 2013.  The design, presented here, meets all of the 
top-level performance requirements, and indeed exceeds them in several cases.  The NGAO mode in particular is 
expected to deliver extremely high performance when using bright guidestars (116 nm RMS wavefront error in typical 
observing conditions, including 10 m/s wind).  The LTAO mode sky coverage is effectively 100% for low surface-
brightness spectroscopic observations, and greater than 50% for diffraction-limited imaging in the near-infrared.  The 
GLAO mode will provide a significant improvement in observing efficiency, increasing the signal-to-noise ratio of point 
sources by 30% in the visible and >100% in the near-infrared over wide fields of view. 

The construction phase of the GMT is expected to start in late 2014, kicking off detailed design studies and large-scale 
AO prototyping activities.  Fabrication of major AO components will begin in 2016, with integration of the AO 
subsystems in Chile expected to begin in 2020 and commissioning in 2022.  In parallel with these activities, we also plan 
to begin developing concepts for second generation GMT AO capabilities, coordinated with the second generation of 
GMT instrument solicitation. 
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